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Abstract. In this paper the causes of the 'mathematical breakdown' of the random-phase 
approximation RPA' are analysed. Startingfrom an exact matrix formula, adiagram analysis 
of a functional-integral approach is developed with the following characteristics: (i) All the 
singularities of the integrands are cancelledcompletely; there is no problem of the limitation 
from the convergence radius of the formula used. (ii) The reality of the partition functions 
at every stage is guaranteed and all the benefitsof the complex representation are preserved 
simultaneously. (iii) All the functional-integral series are transformed into two-dimensional 
integral series. (iv) A functional-integral approach, which can Calculate the mixed mode 
contributions, isgiven forthe first time. The diagrammatic rulesofmixedmodecontributions 
and some concrete examples are given. Some exact symmetry relations and expressions are 
suggested and proved. These symmetry relations are also preserved at every stage in our 
diagram analysis. They are useful in practical calculations. A new exact relation is also 
derived. 

1. Introduction 

This series is devoted to  studying the functional-integral approach (FIA) in quantum 
statistics. In the first paper [l]? a theorem shows that a general statistical equilibrium 
problem can be transformed into a problem of an ideal gas moving in a (complex) time- 
dependent external field. The price one needs to pay is introducing a functional integral. 
The susceptibility of a Kondo system in a fairly wide temperature region is calculated 
io the first harmonic approximation (FHA) in the FIA. The comparison with that of 
renormalization group theory (RCT) shows that in this region these two results agree 
quite well. The expansion of the partition function with infinite independent harmonics 
for the Anderson model is studied and used to discuss some symmetry relations. The 
occupation number and susceptibility of asymmetric Anderson systems are studied by 
FIA in [2], and their results are compared with that of renormalization group theory in 
[31. 

t During 1990 and 1991 the author has also been at the International Center for Theoretical Physics, Trieste, 
Italy, and the Institute for Theoretical Physics, State University of New York, Stony Brook, NY, USA, 
Present address: Texas Center for Superconductivity, University of Houston, Houston. Texas 77204.5932. 
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It is well known that there is a 'mathematical breakdown' in the famous random- 
phase approximation (RPA') of the FIA. Amit and Keiter [4] neglect all the mixed mode 
effects and suggest the independent harmonic approximation to avoid this difficulty. 
But the divergence problem still needs to be solved. This paper is devoted to developing 
a systematic diagram analysis of the FIA, including the mixed mode effects and free of 
divergences. 

In section 2, the cause of the 'mathematical breakdown'of RPA' is investigated. The 
validity of a useful formula is analysed. 

In section 3, a systematic diagram analysis of an expansion of the partition function 
in the FIA isgiven. The cancellation theoremof divergenceis proved. All the singularities 
of the integrands are cancelled in every order. The reality theorem is proved. Then the 
reality of the partition function in every order is guaranteed even in the complex 
representation of FIA. 

In section 4, the contributions from mixed modes are included in the theoretical 
framework in a natural way. The diagrammatic rules of mixed mode contributions 
and some concrete examples, especially the lowest-order (third-order) mixed mode 
contributions, are calculated. 

In section 5. as applications of the diagram analysis, some exact symmetry relations 
and expressions for Anderson systems are proved. They are useful in practical calcu- 
lations. Some symmetry relations, which are pointed out and proved in the independent 
harmonic approximations in [2]  and [l]. are proved to be exact. 

In section 6 ,  the same topics as in section 5 are discussed for Anderson systems with 
attractive Coulomb interactions (negative U). 

The concluding remarks and discussions are given in section 7. 

2. The cause of RPA' divergence in FIA and a matrix formula 

It isinteresting to introduce aFeynmandiagram analysisin the FIA, because the diagrams 
may be useful in discussing the following problems: 

(i) How to make a systematic expansion that is exact and allows for further approxi- 
mations beyond the independent harmonic approximation or RPA'. 

(ii) What will happen at very low temperature in the symmetric case. 
(iii) The difference of the results of renormalization group approach and FIA when 

the f level is below the Fermi level. 

This is not an easy task. 
Keiter [6] has discussed the Anderson model from the viewpoint of a diagrammatic 

perturbation technique in the real representation. One of the remarkable achievements 
is that the author establishes the relation between the FIA and the perturbation expan- 
sions by means of comparison. But some questions still exist. For example. these 
approaches, including RPA', are based on an elementary formula: 

But in these approaches in the vicinities of the singularities of the Green function, x 
turns to infinity. In principle. expansion (2.1) is no longer valid when 1x1 > 1. We have 
no reason to believe that the integrationsfrom -a to t m  are still correct. 
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As pointed out by Amit and Keiter [4], in the higher-order RPA' [5] one faces higher 
order pole singularities and some terms in the expansions are divergent. Then they 
neglect all the mixed mode effects, suggest the independent harmonic approximation to 
avoid this difficulty. (But the mixed mode effects have not been included yet.) It is a 
challenging problem to build in the mixed mode contributions to the theory. It is 
also interesting to eliminate the divergence of all the diagrams at the beginning. So a 
systematic analysis of the expansion in the RA is still needed. 

In order to establish a systematic diagram analysis of FIA, including the mixed mode 
effects and free of divergences, instead of formula (2. l) ,  we start from the formula 

exp(Tr In A) = det(a) (2.2) 
which can be proved in the following cases: 

(i) When a is Hermitian. Formula (2.2) can be proved easily in the eigen-rep- 
resentation. Please note that here A can be an infinite-dimensional matrix and its 
eigenvalues can be any real number. 

(ii) When A is not Hermitian and 

p, - I /  < 1. (2.3) 
Formula (2.2) can be proved in the linear operator theory [7] starting from (2.1) for 

(iii) When A is not Hermitian and 
an N x N matrix, the infinite determinant follows then in the limit N - t  m as in [4]. 

Ih, - 11 > 1. (2.4) 
Then formula (2.1) is no longer valid. The main point of this discussion is to emphasize 
the subtle difference of the validity conditions of the formulae (2.1) and (2.2). 

For a logarithmic function In(z), the only singularity in the finite region is the branch 
point at z = 0. Usually, in order to make the function single-valued, one uses a branch 
cut starting at z = 0, or fix on the leaf of the Riemann surface. But analytic continuation 
between two leaves of the Riemann surface is still available. Following [SI, one can 
change the expansion centre, using analytic continuation to avoid the singularity. 
According to the Abel theorem and choosing a suitable expansion centre A,, we always 
have 

L 

InA = C, cm(A0 - A ~ ) *  (2.5) 
m=O 

where 

IA,,, -Aol < r C&O) = (d"/W?) In(Ao)/m! (2.6) 
and r is the convergence radius. One can also use the similarity transformation to get 
the same expression (2.5). 

Not all the linear operators can be diagonalized by a non-singular transformation 
even for a finite matrix, but all the matrices can be transformed into subdiagonal form 
by a unitary transformation [7 ] .  According to the properties of subdiagonal matrices, 
we have 

r 

T r l n a  = 2 C,(A,)(A,, -A,)'" =Cln(A.,). 
n m=O n 

Formula (2.2) is valid and independent of the magnitudes of the eigenvalues and the 
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expansion forms, even in the cases in which formula (2.1) does not exist. The formula 
(2.2) is proved, 

Usually infinite matrices can be considered as the limiting case. For Hermitian 
matrices, the formula is proved even in infinite matrices. For infinite non-Hermitian 
matrices, if when N -t =, the limit of the RHS of expression (2.7) exists and is finite, then 
formula (2.2) is still valid. As to a discussion on the more general condition from a 
mathematical viewpoint, we shall leave this as an interesting open problem. 

The main point is that in the RA, x denotes a function of the Green functions. In the 
vicinities of singularities of Green functions, x turns to infinity continuously. Certainly 
one can use the expression (2.5) or 

I n A = I n A o -  x - - ( l - ~ )  ^ 1  a -  , 

m = l  

Although (2.5) or (2.8) can be derived from (2.1) by transformation, they are eventually 
different from (2.1). I n  the usual thcory of FIA, one always neglects this differencc. In 
the integration one uses expression (2.1) only and errors are built in to the theory at the 
beginning. Even if one notices this difference and uses (2.5) or (2.8), one cannot change 
A,,continuously in a practical calculation of the functional integral, because that is too 
complicated. The merit of formula (2.2) is that the form of the formula is unified and 
independent of the magnitude of the eigenvalues of 2. This merit is important for our 
following study in the theoretical framework of the FIA. 

3. Feynman diagram analysis in the functional-integral approach, including mixed mode 
effects and free of divergences 

In this section the first problem is how to establish a systematic expansion in  the 
RA without divergence and develop a corresponding Feynman-diagram analysis. The 
second problem is how to maintain all the benefits of the complex representation and 
guarantee the reality of the partition function in every order simultaneously. The third 
problem is how to transfer all the functional integrals corresponding to the expansion 
diagrams into finite-dimensional integrals. The fourth problem is how to include the 
coherent effect of mixed modes. U p  to now one has still needed a FIA including mixed 
mode effects in a natural way. Surely they are important at low temperature. This 
problem is a challenging one. We try to establish a systematic approach in FiA by solving 
these prohlems. 

3.1. Theoretical expansion in RA and cancellation theorem of diiiergence 

Hereafter the symbols used follow [l]. As pointed out by Amit and Keiter [4], there is 
a 'mathematical breakdown' in the famous W A '  in R A  [SI. The generalized RPA' [4] 
consists of two steps: expanding the logarithmic operator according to (2.1); admitting 
the index in the matrix elements to have only the values -C U [4]. Then 

Some spurious terms enter into the expansion, when v 3 2; the pole singularities of 
higher order lead to divergence. 
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It is worth noting that in the vicinities of the singularities of &, the expansion (2.1) 
is no longer valid owing to the finite convergence radius and divergence occurs. Because 
the RPA' is a selective partial summation of expansion (2.1), we assert that the main 
danger comes from expansion (2.1). 

It is also worth noting that the divergence is only a signal: even in the finite region 
1x1 > 1, expansion (2.1) already loses its meaning. The road leading out of the dilemma 
is to avoid expansion (2.1). 

Fortunately we can use an exact linear operator identity as the starting point: 

exp(Tr In a) = det(A). ( 3 4  
This formula transforms the combinational operation with logarithm into a determinant 
and is independent of the magnitudes of the eigenvalues. Certainly if one makes an 
incorrect approximation in the determinant, one can still get a divergent result. 

To avoid superpositions of poles, we expand the determinant exactly according to 
the definition of the determinant. Then establishing the exact diagram rules, we can 
develop a natural diagram analysis. 

It is obvious that 

exp Tr In Q" = fl det(Q") io 1 0 
(3.3) 

Consider the infinite matrix Q" as a limit of the corresponding 2m x 2m matrix with 
m - t  m. Its centre is close to Q&; the position of the centre is (-0.5. -0.5). Introduce 
gg,q"andnew labeln: 

gg(n)  = Cg(n - m - 1) n = 1,2, . . . ,2m (3.4) 

The merits of this procedure will be explained later. We call this kind of section a 'mirror 
symmetric section'. 

According to the definition of determinant we have 

We") = (-l)pqPe,q%, . . . G,e2a (3.6) 
P 

wherep is the inverse number of the permutation: 

(3.7) 

A cancellation theorem ofdiuergence. In the expansion (2.26) in [ 11, all the singularities 
of the integrands in every term are removable. 

Proof. In the expansion of det(Q7, only one term equals 1, and all others contain one 
ormore factorsfor G g ,  possessing isolated singularities at the followingpoints, according 
to (2.28) in Ill: 

1 + A o  = 0, -1, -2,. . 
1 + B" = o ,  -1, - 2 , .  . 

Because of the property of determinants, all the arguments in gg in a term of expansion 
(3.6) are different and all the singularities in the expansion are simple poles. 
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Fortunately, there is a factor [n,r(l  + AqI‘(1 + B91-I in expansion (2.26) in [l], 
which possesses infinite simple zeros exactly at the same points (3.8). Just these simple 
zeros cancel all the possible singularitiesin the expansion of det(Q9 and all singularities 
in the integrands become removable. 

Because of Gaussian factors, all the integrals in the expansion are convergent. This 
allows us to establish diagram rules and a systematic diagrammatic analysis. 

Theorem. All the termsin theexpansion(2.26) in [llcanbe tracedtodoubleintegrals. 

Proof. Considerageneraltermcontainingmo qJn = landm; qin = landexpressed 
by 

(3.9) k.Mil k,v-i * k L m i  z*kb - i  
u k  = ( - i ) P + P ’ - m ” ( u B n ) M - ( m g c m n M 2  g(m3p)z_ ,+ ,  ‘ “ Z , & I Z _ , ~ + I  ” ’  M-1 

where 

M = 2m a = (NI, N2,. . . , N M )  p = ,p2, .  . . , B M )  

(3.10) 

a, = 1 - b, = 1 - bJ,p,. 

Because g ( m ,  p)  depends on zo, r j  only, all the Gaussian integrations over zp  and 2: 
(except p = 0) can be carried out by the following orthogonal formula: 

(3.11) 

We obtain 

where 

k G (k-2m+i7. . , 7 kw-I) k’ G (k!.2m+1,. . , 1 kL -1 ) .  (3.14) 

We have now finished the transformation from the functional-integral expansion to 
a series of double integrals. 

3.2. Diagram rules 

1nordertoanalysetheexpansionsystematically.we introduce aspecial diagramanalysis. 
Following Feynman’s idea on the diagram technique, we establish the correspondence 
between terms and diagrams. 

The prescription for drawing a diagram of uk is as follows: 
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(i)Set threerowsof2mequidistantpoints. Thelabelsin the upper,middleandlower 
rows are integer sequences {a'}, {no}, {n}, respectively. The sequence {a,,} has natural 
order. The permutation 

corresponds to that of a term in det(Q 1). The permutation 

(;::) 
corresponds to that of a term in det(Q'). 

(ii) For 0 = 4 (U = 7 ), an arrow starting from point no in the middle row pointing 
to point n' in the upper row (point n in the lower row) corresponds to z&", (z& 
respectively. Their physical explanation can be the amplitudes of fluctuations in complex 
fields with frequencies U",,-", (U,,,,-") in the mean-field background. 

The prescription for writing down the contribution of U, corresponding to a given 
diagram is the following: 

(i) According to the configuration of arrows, check the factor l3, z$ 2;'; first: 

ti, = 0 
U, # 0 

if {k,  # kh} 

if {k,  = kh} 
(3.15) 

(ii) Determine the number of cross points for lower (upper) arrows, which equals 
the inverse number p (p ' ) ,  Determine the number of lower arrows 1 = 2m - mo. 
Multiply the integrand by a factor ( - l )ptp'+' .  

(iii) For every lower (upper) arrow introduce a factor d(Ufin)G;d ( n  - m -  1) 
(d( Vfin)Gi (n - m - 1)) into the integrand respectively. 

(iv) Every factor I z I Z k ~  in the U ,  corresponds to a factor k, ! /nk# in the Uk. 

According to this prescription one can give expressions like (3.13). 

3.3. Reality theorem 

The reality of the partition function is a necessary condition in physics. But the complex 
auxiliary field r(a)  is introduced in the present FIA. It is easy to lose reality in some 
approximations. For example in the infinite independent harmonic approximation the 

in equation (3.8) in [l] may be complex. So it is very important to guarantee the 
reality of the partition function in every approximation order. Modern studies on 
multiple series point out that the approximation mode is very important. In the limiting 
process one has many choices. The main problem is in what kind of section can reality 
be guaranteed in every step. After careful consideration and exploration, considering 
the character of @, we found the mirror symmetric sections, defined in equations (3.4) 
and ( 3 . 9 ,  are available. 

Reality theorem. Under the mirror symmetric section, all the terms in expansion 
(3.12) are real. 

Let us first introduce some concepts; the self-dual and dual diagrams: 

(i) In the mirror symmetric section, the mid-perpendicular of no axes divides the 
unlabelled diagram into two parts. In general these two parts are asymmetric. If the 



1346 Dui Xianxi 

1 2  3 5 6  
0 0  

I 

0 
I 5 3 4  2 6  Figure 1. A typical self-dual diagram 

2 3 1 4 5 6  I 2 

0 0  
I 2 

0 0  
I 2 5 3 4  6 

0 0  0 
1 3 4 2 5 6  ( b )  

(4 
Figure 2. Two dual diagrams. 

unlabelled diagram is mirror symmetric with respect to the mid-perpendicular. we call 
the diagram selfdual. 

(ii) If an unlabelled diagram d is a mirror image of another diagram d' with respect 
to the mid-perpendicular, we call then dualdiagrams of each other. 

For example, the diagram in figure 1 is self-dual and the diagrams in figure 2(a) and 
(b) are dual. It is obvious that in the mirror section all the diagrams must be either self- 
dual or dual. 

Lemma 1. The contribution of every self-dual diagram is real, 

Proof. Noticing that under mirror symmetric section in the self-dual diagram the 
factors of the Green function appear pairwise 

. .  -1 
(Ao + v)(B' + U )  

the contribution of self-dual diagram I I ~  can be written as 

-' )] [r(l + A')T(l + B")]-'  2,(sd) = n f [I- .- 
II A ' + v  B o + ~  

1 

(3.16) 

(3.17) 

(3.18) 
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(3.18') 

where 

= (6 - 1)/2 b, = (l/Zn)F,J3 a = ( l /k)d(U@).  (3.19) 

We can prove that: 
x 

(udsd)) = &O 1-1 dYo exp[-JG?i + ~Z)lG(sd) 

=2/-: duo dyoexp[-~+?i + Y ~ I  

x Re F,[g  +ib, -ay, + iuaxo; c-  ib, +ay0 - iuax,]. (3.20) 
0 

Lemma 2. The resulting contribution of any pair of dual diagrams is real. 

Proof. Suppose that the contribution of a diagram d can be expressed by &(d) as 

Ck(d) = fl F,(A", B"). 
0 

(3.21) 

According to the properties of the Green function and the mirror symmetric section, 
the contribution of its dual diagram d' is 

zix(d') = n F o ( B u , A " ) .  
0 

(3.22) 

Suppose the contributions (u,(d)) and (uh(d')), respectively, are not real. We can show 
that the resulting contribution must be real: 

Combining lemmas 1 and 2, the reality theorem is valid under mirror symmetric 
section for finite matrix @'. It is obvious that the contributions of the diagrams are 
convergent. Then the results are limiting-mode independent. The reality theorem is 
proved. 

4. Partial summations and diagrams with mixed modes 

Now let us discuss the calculation of diagrams by the diagram analysis developed above. 
First of all classify the diagrams according to the arrow number 1. We shall be concerned 
with the expansion in the low-temperature region. 
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n t v  n 

n n t v  
Figure 3. A typical diagram of second order. 

(i) Zeroth order, I = 0. We have 

g[O] = 1. (4.1) 
This is the static approximation. 

kinds of diagrams will not appear: 

(iii) Second order, I = 2. Here 

(ii) First order, 1 = 1. According to the diagram analysis developed above, these 

g[ U ]  = 0. (4.2) 

The second-order diagrams exist only when U, = - u2. 
(iv) Third order, I = 3. These diagrams are different from the first one. The third- 

order diagrams do exist, for example g[1.1.-2], g[2,-1,-1], etc. In general the 
following diagram exists: 

g[v1, U 2 1  - ( D l  + V 2 ) l .  (4.4) 
These are the lowest-order diagrams with mixed modes. 

g [ ~ , , - ~ , l , g [ ~ ~ , , - ~ ~ , ] .  . . 
S I V I ,  V I ,  v3, - V I  - U 2  - vs1 

(v) Fourth order, I = 4. In this case 
are independent harmonic contributions 

are mixed mode contributions. 
(vi) Higher order: the contributions of these diagrams may be deduced by analogy. 
Now let us discuss the second-order diagram shown in figure 3, which is a typical 

diagram of second order. 
Partial summation is one of the important steps in the diagram technique: choose a 

c las  of diagrams and then sum them up. Summing over all the diagrams of second order 
with definite U but different n ,  we obtain 

g o [ u ,  -U]  = - e;ii:, C C:(n)Cg(n + U )  

I 

" = - %  

= - (e~6?v/(2ai)2)10[v, -U]. (4.5) 
Noting that 

1 "  1 1 -- - 
1 - I  

r g u ,  - u ]  = C 
"=-  (n - BD)(n+ Y +A")  u + 6 z, !n - u - 1 - A o  --) 
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1 , "-1 

I![V, -v] = n = _ X  -SI ( (n-E')(n+v-Eo) 1 )= -2  v , = , l + B 0 + k  

we obtain 

l )  (1 + A "  + k + 1 + E V  + k 
1 "-I 1 

I q v ,  -v]  = - z 
v k=0 

+-z( 1 "  1 - L j .  
6 + v . , ~  n - v - 1 - A o  N - E a  

Summing over all v and taking the Gaussian average over all {zJ.  with v # 0, we obtain 
the exact contribution of all second-order diagrams, including all n and v # 0: 

After simplification we have 

6 " - I  1 
P [ v ,  -v] = - z 

v k = o  (Ao + 1 + k)(B" + v - k)' 

(4.7) 

Some special cases are: 

1"[1, -1]=6/ (A"+1)(E0+l)  (4.9) 

1'12, -21 = (6/2)(1/(1+A")(2+B")+1/(2+Ao)(1 +B") ) .  (4.10) 

At low temperature, expression (4.9) is consistent with the first harmonic approximation 
developedby Amit andKeiter[4]. ItisworthnotingthatF[[v, -v]must bepermutation- 
invariant with respect to A'and E'. In fact we have 

Our result (4.7) is useful and practicable in calculating the contribution from all the 
independent harmonics at low temperature. 

Now let us further study how to consider the mixed mode effects. This is an important 
problem in FIA and has not yet been solved. But in this theoretical formalism, the mixed 
mode contributions appear in a natural way. All third diagrams are of mixed mode 
coherent effects. These diagrams can be calculated explicitly in our formalism. 
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n t va n n t U, 

0 
n n + U, n t U, 

Figure 4. The lowest-order diagram with mixed modes. 

Infigure4, atypical third-orderdiagramisshownwith v 2  2 uI + 1,Thecontribution 
of a general term with fixed v v 2  is the following: 

where 

with 
% 

,,E 

1 
(12 + 1 + A")(n + 1 + v I  + .h')(n + 1 + v 2  + A'y 191 = 

"*-I  
1 1 - 1 

">- I  

=- l 2  
v I u 2  , = , A 0 + l + k  v l ( v 2 - v 1 ) ~ , A " + l + k  

(4.12) 

(4.13) 

..i.. , .,... , .~ ~ .,, , 
1 

(n - B')(n + 1 + v 1  + A-'')(n + 1 + v 2  +'A") 

- I  

I Y 2  = 2 

- I  

+- I C  ] (4.14) 
1 - I  

x c  + 1 t V I  + A 0  6 + v* n " - y I  n + 1. + v 2  +A" 

- " , - I  
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- " , - I  

) (4.15) 
1 

n + 1 + ~2 t Aa 
I 

1 " i  1 - 
v l (6  t ~2 - ~ l ) ~ = - ~ ~  n - Bo + V I  

and 
- Y 2 - l  

n = _ X  ( n  - P ) ( n  + v I  - B')(n + v 2  -Bo) 
1 

134 = E 
l , - I  Q - 1  

1 
- l "  (4.16) 

1 1 - - 
v 1 ( v 2 - v I ) k = ~ ~ - ~ ~  " B ' + l + k  v 2 ( v 2 - v I )  , = , B W + 1 - k '  

one can express all these sums by a Y function or digamma functions as shown in 
mathematical references, such as Abramowitz and Stegun [lo]. 

5. Some exact relations and expressions for the Anderson system 

As applications of the functional-integral approach including mixed mode effects and 
free of divergence, in this section we try to prove some exact symmetry relations and 
expressions for the Anderson system by means of diagram analysis in FIA: 

X ( T , x o > Y o ) = X ( T , 1  - x o . Y o )  (5.1) 

i / ( T , 1  - x u , ~ " ) = 2 - ~ i ( T , x u , ~ u )  (5.2) 

M ( T ,  X O ,  Y O ,  -X) = - M(T, XU, Y O ,  %e) (5 .3 )  

xo = - &//U 6 = T / K T  YO = u/nr. (5.4) 

where 

The symmetry relations (5 .1) ,  (5.2) and (5.3) have been pointed out and proved in 
first harmonic approximation in FIA [2]. Recently they have also been proved in infinite 
harmonic approximation [l]. In this section we shall prove these relations to be exact. 

Theorem. For the Anderson system, the functional-integral approach can prove that 
the symmetry relations ( 5 . 1 ) ,  (5 .2)  and (5.3) are exact in any order. 

Proof. According to the general diagram rules the partition function can be exactly 
expressed by [l]: 

In a magnetic field, we have 

where g and go are Lande factors. Then 

+ F,( - u / 2  = 2&/ + u / 2  

are field-independent. The free energy is F = -KTln E. 

(5.7) 
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The magnetization M and susceptibility x contributed from local states are 

M = - d F / a % = K T S ' / Z  
(5.8) x = (aM/aX)Z+" = KT[Z"/Z - 

According to the diagram rules, the partition function Z can be written as 
_ L =  

= = 7 I, I, clxodyoexp[-n(x:,+Y2,)lny~(,',B~). (5.9) c 

0 

Because Yh(Ao, B O )  consist of the contributions of self-dual diagrams or dual diagrams, 
they both possess the following property: 

(5.10) '€',(Ao, Bo) = 'Yh(B', A'). 

Introducing 
E = (6 - 1)/2 b, = w/2j~)EI, a = N ( U p / n )  (5.11) 

(5.12) 

= (E n Y k [ E  + ib, +ay - iaax; E - ib, -ay + i u ~ ]  
h a  

Yk[E - ib, -ay  - iuu ;  E+ ib, +ay -icu]) 
k o  

=E[E,(-b,},aJ. (5.13) 

The second step comes from the fact that Z is invariant under the inverse transformation 
of the dummy iariablesq and y,. The third step is due to the property of Y h  expressed 
bv (5.10). 

, \  I 

Then we have 

so that 

E[S, x , ,  yo] = E[6.1 - xg, yo] 

and therefore 

az/ax = - gpB 2 oaz/ab,. 
" 

Owing to the property (5.14), 

(5.15) 

(5.16) 
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Therefore 

M [ E 7 x ~ , % ~ 0 1  = -NE, 1 - x 0 ,  - % y o ] .  (5.17) 

When %-+ 0, 

M[E>xo,Yol= - M E ,  1 -xo,Yol (5.18) 

where we have used the following properties: the odd-order derivatives of an even 
function are odd; the even-order derivatives of an even function are even. So 

a 2  
= ( ~ P B ) '  2 7 S [ E 7  b o ,  b-0, . ] I  

o1 a b ,  b,=b-,=-bj 

Therefore 

x[& 1 -.%Yo1 = x [ ~ , x o . Y o l .  

Now let usprove the exact relation (5.2). Denoting 

where 

it is obvious that 

s 
tik = - KT-InS 

6 E k  

and so 

According to (5.14),  

Then we have the exact relation 

ZIJ6,l  -xo,Yol= 1 - ~ l , [ ~ , x o , Y o l  

because 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

(5.26) 
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(5.27) 

E l [ 6 , 1  - ~ u , Y a l = 2 - ~ / [ ~ , x o , Y o l .  

For the symmetriccase, the occupation number must be 1 exactly: 

fi ,(S,xo = &,Yo] = 1. (5.28) 

According to the diagram analysis, one can also prove some exact expressions, which 
is useful in practical calculations. 

Theorem. For the FIA, the susceptibilitycontributed by local stataxcan be expressed 
exactly by 

x = [4nkPB)2/U1(z - 1/24 ( 5  29) 

where the average is defined by 

f-:]-: ~xP[-+; + y?j)1A(xo7 Y U P [ ~ U , Y O I  

I' J= expI - .(xi i- Y2O)121xO7 Y U I  

 YO 
A =  . .  .:.. ... . . . (5.30) 

dyu 
~- ~~~~ ~ 

_x _ x ~  ~ ~~ ~~ 

The expression (5.29) has been derived in [4], with a factor missing. 

Theorem. For the Anderson system one has exactly that 

M[T, X " , Y O ,  -XI = -M[T,xu. Y o ,  W. (5.31) 

Proof. Define 

Q(E, br,, br-o> 0,  

= (xu c [ E +  i br0 - uyo + iuaxu; 5- i b,, +ay, - iuuxu] ) (5.32) 
X O  

a 
ax M = - KT-In S 

we obtain 

M(T,xu,Yu, -w= - w T > x " , Y u > x ) .  
The theorem is proved. 

(5.33) 

(5.34) 

(5.35) 
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Please notice that: 
(i) One of the benefits of our diagram analysis is that we can preserve all the exact 

symmetry relations in every step(stage). 
(ii) In practical calculations, these relationsandexpressionsare useful. For example, 

knowing the partition function, including the higher-order diagram contribution to 
calculate the susceptibility, one usually needs the second derivatives of Z with a lot of 
terms. But if we start from (5.29), then we only need one term. 

6. On the Anderson system with attractive Coulomb interaction 

The Andersonsystem with attractive Coulombinteractionisvery interesting. Sometimes 
it has been considered to be related with superconductivity. In this section we try to 
generalize the previous results to the negative Ucase: 

U =  - U0 <o. (6.1) 

a0 = fV\uoP/4 
We have 

a = i a ,  

g =  (6 - 1)/2. (6.2) 

Following a similar discussion to that in section 5 ,  we can also obtain the same 
relations of the partition function 2, susceptibility x. occupation number El and mag- 
netization M for the negative Ucase: 

bi, = ( P / W E i o  - 

- 4- uo, 6, Yo.  1 - xol = z.[- U0 1 6, Yo. xol 
x[- U,, 6 ,  Yo,  1 - X o l  = x[ - U0 3 8% Y o  9 X o l  

i i ,[-Uo, &Yo,  1 - xol = 2 - E,[- uo, S.YO,XOl 

M [ -  U,, &Y,. 1 - X O ,  %I = - M [ -  uo. & Y O ? X O .  -%I. 

lim M [  - U,,  6 ,yo ,xo ,  81 = 0 

Ei [ -Uo,  G , Y o , x ~  = 4, %I = 1. 

(6.3) 

The special cases are: 

(6.4) 

(6.5) 
It is very interesting to note that the exact occupation number expressions for the 

An exact expression for the occupation number for the Anderson system with 

X-0 

Anderson systems with repulsive and attractive Coulomb interactions are different. 

u = - u  i .  0 s. 

nl, = a + [2n/V/(U,Pn)lu’o. (6.6) 

Y = Y o  - blo/ao (6.7) 
We prove this as follows. For U = - U0 < 0, letting 

one obtains 

x dxo dy Y k [ -  U o ,  E - iaoy - uaoxo; E + iaoy + uaoxo]. (6.8) 
0 
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Notice that the transformation (6.7) is only applicable to the zero-field case, or it will be 
@dependent. So we discuss the occuption number in zero field: 

ti, = - K T ( f ’ / f  + %‘le) (6.9) 

Then we obtain the exact expression (6.6). This expression is also useful in proving 
relation (6.3) and in practical calculations. 

7. Discussion and concluding remarks 

Two of the main problems in the functional-integral approach are how to overcome the 
divergence difficulty and how to calculate the contributions from mixed modes. In this 
paper we discussed the causes of mathematical breakdown of RPA’. One is due to the 
limitationoftheexpansionformulaused; theother isdue totheimproper approximation 
of the determinants. Unlike the usual theory of FIA, we analyse and prove the validity 
condition of a matrix formula and point out that its benefits are itsindependent expansion 
form and the fact that there is no problem of limitation of convergence radius. Starting 
from this formula and exact rules for a determinant, we establish a diagram analysis of 
FIA, with the following characteristics: 

(i) There is no divergence and no problem of limitation of convergence radius. This 
is different from another approach [6]. 

(ii) The realityofpartitionfunctionsineverystage isguaranteed, even in thecomplex 
representation, and all the benefits of the complex representation are preserved. 

(iii) All the functional-integral series are transformed into finite-dimensional (ZD) 
integrals. 

(iv) The contributionsof mixed mode effects are included in a natural way. It is the 
first time that a concrete calculating method has been given. 

(v) According to the diagram analysis of FIA, we prove some exact relations (5.1), 
(5.2). (5.3) and (5.28) for U > 0 and (6.3). (6.4) and (6.5) for U < 0. 

(vi) We also give and prove an exact expression for the occupation number (6.6) for 
negative U, which corresponds to the exact susceptibility expression (5.29) for positive 
U. They are useful in practical calculations and in the proof of some exact symmetry 
relations. 

Other related topics will be discussed later [9]. 

Acknowledgments 

The author would like to express his sincere thanks for financial support by the Glorious 
Sun Fellowship through CEEC and supports in part by ITP, NSF Grant No. PHYS89- 
08495, ICTP and the Chinese Foundation of High Education. He would like to thank 
sincerely Professors C N Yang, H T Hieh, C S Ting, H Chen, P B Allen, T T S Kuo. A 
S Goldhaber, B M McCoy and R Shrock for significant discussions and the hospitality 
of ICTP, ITP, the Department of Physics, SUNY, Stony Brook and the Texas Center 
for Superconductivity at the University of Houston. 



The functional-integral approach in quantum statistics 1357 

References 

[I]  Dai Xianxi 1991 J.  Phys.: Condens. Marter3 4389-98 
[2] Dai Xianxi and Chen-sen Ting 1983 Pkys. Reo. B 28 5243 
131 Krishna-Murthy H R. Wilkins J Wand Wilson K G 1980 Phys. Re". B 21 1003,1044 
[4] Amit D andKeiter H 19735. Low. Temp. Phys. 11603 
[ 5 ]  Wang S Q. Evenson Wand Schrieffer J R 1969 Phys. Rev. Leu 23 92 

Wane S 0 1970 PhD Dimerfalion Universitv of Pennsvlvania 
[6] KeitLr Hi970 Phys. Reu. B 2 3777 
171 Danford N and Schwartz J T 1963 Linear Ooeralors (New York: Wilevl D 1029 . .  .. . 
[SI XuXinwen.ZhongWanheng,DaiXianxi, WangXindeandMiZhengyu 1988Chin. J.  InfroredMiilimeier 

Waoes7 (1) 9-17 
191 Dai Xianxi to be published 

[lo] Abramowitz M and Stegun I A 1965 Handbook ofMalhematica1 Functions (New York: Dover) 


